
2024-09-13

Spectacular AI SDK

Calibration manual

Introduction
This document describes the calibration aspects that are relevant to the Spectacular
AI SDK. The target audience are users of the core SDKwho wish to perform the
camera calibration manually. For thewrapper SDKs (e.g., OAK-D or RealSense
wrappers), this is not required as the factory calibration parameters are provided by
the devices and automatically used by the SDK.

To start using manual calibration with Spectacular AI SDK, it is recommended to
start with a calibration test in collaboration with Spectacular AI engineers. This
provides a reference that helps the integration with the customers’ camera
calibration pipeline. The calibration test is described in the first section of this
document.

The second part of the document is a self-contained description of the mathematical
calibration models and coordinate systems used by the SDK, intended as a reference
for integration.

Spectacular AI Oy 1/20

2024-09-13

Calibration test

Example: simple AprilGrid calibration using a computer screen:
measure and divide by 8.1 to get tagSize.

In the calibration test, a single device individual is calibrated in collaboration with
Spectacular AI engineers.

The recommended way to perform the test is using the built-in recording function in
Spectacular AI SDK to record a calibration sequence. If the SDK has not yet been
integrated to enable this, it is also possible to record camera (and preferably also IMU)
data using other software and convert the data to a suitable format in collaboration
with Spectacular AI.

A calibration test sequence should view a calibration pattern frommultiple angles.
The calibration pattern may be displayed on a computer screen or printed on a flat
surface. Larger screens may improve accuracy of the calibration. In the calibration
test, the IMU is also calibrated from the data and, consequently, the calibration
target must be stationary and the device should be moved around it.

The following patterns are supported:

● AprilGrid (link to PDF)

Spectacular AI Oy 2/20

https://github.com/ethz-asl/kalibr/files/8514447/april_6x6_80x80cm_A0.pdf

2024-09-13

● Checkerboard

The size of the calibration pattern should be defined in the YAML format supported
by the Kalibr software. For example

target_type: 'aprilgrid'
tagCols: 6 # number of apriltags
tagRows: 6 # number of apriltags
tagSize: 0.037654321 # size of apriltag, edge to edge [m]
tagSpacing: 0.3 # ratio of space between tags to tagSize

The recommended resolution for calibration image data is the maximum sensor
resolution. However, if this cannot be achieved, the resolution should be at least
400x400. If IMU data is included, it should be recorded at 50Hz or more (500Hz
recommended). If IMU data cannot be recorded, then approximate IMU-to-camera
extrinsics (see the sections below for more information) should be provided. If the
calibrated system includes stereo camera pairs, the frames recorded from stereo
camera pairs must be synchronized.

The recorded sequence should be sent to Spectacular AI, who will calibrate the
device based on the data and send a calibration file, which can be used as a
reference and example for the subsequent steps in SDK integration.

Spectacular AI Oy 3/20

2024-09-13

Calibration specification

File format
The calibration is provided to the SDK in JSON format. Spectacular AI will provide a
reference as the results of a successful calibration test. An example calibration file for
a stereo-camera-IMU-system is given below.

{
"cameras": [

{
"imageWidth": 1280,
"imageHeight": 800,
"focalLengthX": 689.9600212721717,
"focalLengthY": 689.7791814512566,
"principalPointX": 625.7728119663589,
"principalPointY": 406.30847173743695,
"model": "kannala-brandt4",
"distortionCoefficients": [-0.042199872,-0.0024873,-0.0156296,0.008040966],
"imuToCamera": [

[-0.007597321889990516,-0.9999685028233531,-0.0022965324560711986,0.003925088167884679],

[-0.028027852548307086,-0.0020827542464345594,0.9996049727848895,-0.002080025490845079],
[-0.9995782711632094,0.007658687614133075,-0.028011146395656494,-0.06311860979590438],
[0.0,0.0,0.0,1.0]

]
},
{

"imageWidth": 1280,
"imageHeight": 800,
"focalLengthX": 689.6159071698686,
"focalLengthY": 689.3776100206506,
"principalPointX": 637.155260132079,
"principalPointY": 410.031637138216,
"model": "kannala-brandt4",
"distortionCoefficients": [-0.0381701,-0.015025785,0.0042020,-0.0005575143],
"imuToCamera": [

[-0.008900660156368811,-0.9999585078949196,-0.0019392620624486545,-0.12881566945954037],

[-0.014472758680460995,-0.0018103137813196835,0.9998936253523123,-0.0004115181854138228],
[-0.9998556483337772,0.008927779823628468,-0.014456045187493105,-0.06294064508330674],
[0.0,0.0,0.0,1.0]

]
}

],
"imuToOutput": [

[0.06859197197751811,-0.9973466692339874,-0.024387758160742287,-0.0],
[0.995903321632435,0.06700802688203558,0.06071654053764488,0.0],
[-0.05892126391820337,-0.028452516606581855,0.9978570734113344,0.04],
[0.0,0.0,0.0,1.0]

]
}

Spectacular AI Oy 4/20

2024-09-13

The colors in the above markup listing highlight the role of the different parameters
as follows:

● Intrinsic camera calibration
○ left camera
○ right camera

● Extrinsic calibration parameters
○ Left IMU-to-camera matrix (TIMU→Cam,0)
○ Right IMU-to-camera matrix (TIMU→Cam,1)
○ IMU to output reference matrix (TIMU→Out)

The meaning of each parameter is explained in more detail in the following sections.

Extrinsic coordinate systems

Spectacular AI Oy 5/20

2024-09-13

The extrinsic calibration models the geometry of the device, from the point of view of
the IMU-camera system. In Spectacular AI SDK, the system is assumed to consist of
an IMU sensor and one or more cameras. The first two cameras in the systemmay
form a stereo camera pair.

The extrinsic calibration is specified as 4x4 homogeneous coordinate transformation
matrices. For a system with one stereo camera pair, one must specify:

● TIMU→Cam,0 : IMU-to-camera matrix for the left camera
● TIMU→Cam,1 : IMU-to-camera matrix for the right camera

Optionally, a matrix TIMU→Out (IMU-to-output matrix) can be given to specify the
reference point and local coordinate axis directions that the SDK will use for its
output (see the coordinate conversion example in the Appendix). The IMU-to-output
matrix also specifies the reference point for external pose inputs in the core SDK.

The IMU-to-output can also be convenient in a case where the SDK output is
compared to an external reference system, such as VIVE trackers. Specifying the VIVE
tracker reference point and orientation using TIMU→Out allows direct comparison of the
poses returned by the two systems with SE(3) or SE(2)-aligned metrics.

Another way to control the IMU-to-output matrix is using the optional parameter
outputCameraPose flag in the vio_config.yaml file. If set to true (which is also the
default in SDK wrappers, but not the core SDK), the local output coordinate system is
the primary camera coordinate system (in OpenCV convention, see below for more
details).

Coordinate system conventions
Spectacular AI SDK uses the following coordinate conventions, which are also
illustrated in the image below

● World coordinate system: Right-handed Z-is-up
● Camera coordinate system: OpenCV convention:

X = left, Y = down, Z = forward.
● IMU coordinate system: assumed to be right-handed (and use SI units)
● Local output coordinate system (“reference point”). Can be specified in the

calibration data. Default: IMU coordinates

Spectacular AI Oy 6/20

2024-09-13

Intrinsic calibration
Intrinsic calibration models the optics of the cameras and possible digital
deformations of the image in the camera pipeline. Spectacular AI SDK uses a
small-aperture approach that is typical for computer vision. Depth of field or
chromatic aberration effects are not modeled..

All models have four common parameters: (fx, fy, cx ,cy), which describe the “focal
length” (exact interpretation depends on the camera model) and principal point.
They should be given as separate JSON fields (see JSON format description above),
e.g., focalLengthX. The rest of the model parameters are given in a
distortionCoefficients array and the type of the camera model in the model
field.

The SDK currently supports the following types of calibration models (see Appendix
for details):

1. Brown-Conrady radial-tangential models
a. Undistorted pinhole: no distortion coefficients (only (fx, fy, cx ,cy))

"model": "pinhole"

b. 3-coefficient radial variant:
"model": "pinhole",
"distortionCoefficients": [k1, k2, k3]

Spectacular AI Oy 7/20

2024-09-13

c. 5-coefficient variant, a.k.a. “pinhole-radtan”
"model": "brown-conrady",
"distortionCoefficients": [k1, k2, p1, p2, k3,0,0,0]

d. 8-coefficient variant (Brown-Conrady / Inverse Brown-Conrady)
"model": "brown-conrady",
"distortionCoefficients": [k1, k2, p1, p2, k3, k4, k5, k6]

e. 14-coefficient variant (Brown-Conrady / Inverse Brown-Conrady)
"model": "brown-conrady",
"distortionCoefficients": [k1, k2, p1, p2, k3, k4, k5, k6, s1, s2, s3, s4, τx, τy]

2. Kannala-Brandt
a. Kannala-Brandt-4, radially symmetric

"model": "kannala-brandt4",
"distortionCoefficients": [k0, k1, k2, k3]

b. Full Kannala-Brandt-18 (ask us for a reference implementation)

3. OpenCV “omnidir” camera model (Mei & Rivers, 2007):
"model": "omnidir",
"distortionCoefficients": [k1, k2, s, ξ, p1, p2]

The values of the calibration parameters depend on the manner the image is
rescaled, cropped or undistorted by the camera pipeline before being input to the
SDK. If these aspects are changed, the calibration needs to be modified accordingly.

One possible non-trivial modification to the images is undistortion, which may be
applied to the images before they are given as input to the SDK. After undistortion,
the images are typically assumed to obey the simple undistorted pinhole camera
model. This may also be performed simultaneously with stereo rectification, which
can also effectively rotate the camera coordinate systems.

Stereo rectification
If the images are stereo rectified before being given to the SDK, special care needs to
be taken to ensure that the image plane rotations used in the rectification process
are correctly applied to the extrinsic matrices.

Before rectification, the calibrated stereo-camera-IMU system consists of the
extrinsic matrices TIMU→Cam0 , TIMU→Cam1 and the camera models f0, fI.

Spectacular AI Oy 8/20

http://dx.doi.org/10.1109/TPAMI.2006.153
http://dx.doi.org/10.1109/ROBOT.2007.364084

2024-09-13

The rectification operation outputs the image plane rotation matrices R0, RI and a
pinhole camera model fpin. The pixels in the rectified images then obey the camera
model

fi’ : r ↦ p’ = fpin(Ri · r), i=0 or i=1

It is then possible to define the undistortion function as

hi : p’ ↦ p = fi(r) = fi(Ri
T · fpin-1(p’)),

where the inverse projection can be defined as

fpin-1 : (px, py) ↦ ((px - cx)fx, (py - cy)fy, 1).

The rectified images Ii’ are formed from the original image Ii as

Ii’(p’) = Ii(p) = I(hi(p’))

If the rectified images I’ are used as input to the SDK, the calibration data should
define:

● Undistorted pinhole camera model fpin for both cameras
● IMU-to-camera matrices modified as TIMU→Cam,i’ = g(Ri) · TIMU→Cam,i

where g creates a 4x4 transformation matrix from a 3x3 rotation matrix as described
in the figure below.

Spectacular AI Oy 9/20

2024-09-13

Accuracy requirements

Extrinsics and intrinsics
The transformation between the two stereo cameras, T0→1, must be accurate and
consistent with the intrinsic camera calibration parameters. It is recommended to
compute this quantity with a calibration system that jointly optimizes these
parameters (see the section below for more information). The average residual
reprojection error should be less than 0.3 pixels (RMSE).

The transformation between IMU and the stereo camera system is not required to be
highly accurate in indoor use cases. The error in IMU-to-camera matrix should be

● less than 1 degree in orientation (less than 3 degrees for indoor use cases)
● less than 5% in translation (or less than 3 millimeters, whichever is greater)

The as-designed IMU-to-camera extrinsics from a CADmodel can typically be
assumed to be sufficiently accurate for indoor and ground vehicle use cases. The
camera calibration, including intrinsic calibration and the extrinsic calibration within
stereo camera pairs must be performed per device individual.

Less accurate IMU-to-camera extrinsic information can be combined with more
accurate stereo extrinsics by using the mathematical identities described in the
Appendix.

Optics and 3A
The use of auto-focus or variable-focus lenses is not recommended as changing the
focus affects the calibration parameters in a hard-to-predict manner. Optical or
electronic image stabilization (OIS/EIS) should not be used.

Auto-exposure and auto-white-balance (in case of color data) may be used. The pixel
data that is fed to the SDK can be linear or gamma-corrected.

Spectacular AI Oy 10/20

2024-09-13

Synchronization
The IMU and camera timestamps should be synchronized to a precision of 1
millisecond. Delays up to 10 ms can be tolerated by enabling an online time-shift
calibration feature in the SDK, but may reduce accuracy and robustness. The
timestamps of the camera frames given to the SDK should represent the midpoint of
exposure (taking rolling shutter readout time into account, if applicable).

Synchronization

Basic: IMU and camera in the samemonotonic clock
In the context of the Spectacular AI SDK, synchronizationmeans that events have
the same time base, i.e., the timestamps originate from the same monotonic clock.

An example of this is given in the figure below. In this example, one of the camera
frames and one IMU sample happen to have the same timestamp, 0.010s, which
means that the IMU sample represents the same time instance as the exposure
midpoint in the camera frame. However, in this basic synchronization, there is no
requirement that all camera frames would match some IMU sample.

For simplicity, the above figure assumes that the accelerometer and gyroscope are
always read simultaneously into one “IMU sample”. The example also shows a stereo

Spectacular AI Oy 11/20

2024-09-13

camera setup, where the two cameras are correctly triggered at the same time and
use the same exposure time.

In practice, achieving good IMU-camera synchronization often requires support from
the hardware. A relatively simple way to implement this in the hardware is using a
real-time processor like an MCU to trigger the camera and read the IMU samples
without using any internal buffering in the IMU. This allows directly reading the
timestamp of the frame trigger and IMU sample from the monotonic MCU clock. The
timestamps then need to be shifted with half of the exposure time and the IMU
DLPF delay which should be specified in the IMU datasheet.

Advanced: IMU samples at exposure midpoints
Ideally, IMU samples and frames should be timed so that, for each exposure
midpoint, there also exists an IMU sample whose timestamp coincides with that of
the frame. However, this is an advanced configuration, which may further improve
VIO accuracy, but is not mandatory.

List of commonmisconfigurations
There are several possible hardware-software-firmware combinations that can result
in correct synchronization. However, in practice, there are also a lot of systems with
incorrect synchronization, which are practically impossible to fix without hardware
changes. Below, we outline some commonmistakes

Spectacular AI Oy 12/20

2024-09-13

Unsynchronized IMU

The most commonmisconfiguration is a system where the IMU and cameras have
separate clocks, whose timestamps have no direct relationship. This adds two
problems which are very hard to fix in real-time software:

1. There is an unknown time offset between the IMU and the camera
timestamps (typically in the order of 100ms after simple hacks), which varies
between runs

2. The offset slowly changes over time due to the drift of the monotonic clocks,
at the rate of a fewmilliseconds per hour

Arrival timestamps

Another commonmistake is not using the timestamp that represent when an IMU
sample actually occurs or when a frame was captured (exposure midpoint), but
using the clock of the host machine to assign a timestamp when a sample or frame

Spectacular AI Oy 13/20

2024-09-13

is read from a buffer, which introduces large and random delays in the timestamps,
which also depend on the sensor (IMU or camera). This is fatal to VIO performance.

In the lucky case, this might be just an easily fixable software issue, but it is
unfortunately more common that, once the issue is discovered, it appears to the
programmer that the correct timestamps are actually not available at all or out of
sync (see previous misconfiguration) and fixing this requires firmware or hardware
updates.

Unsynchronized stereo

One common issue in stereo and multi-camera setups is that the different cameras
are not triggered at the same time. This can be tolerated in certain use cases, but in
the most typical case where the idea of the cameras is applying stereo vision, this
severely degrades the accuracy of the system, not just from the point of view of VIO,
but also stereoscopic depth results in general. The problem is especially serious on
mobile systems.

Misconception: One IMU sample per frame (low IMU rate)
Synchronization does notmean that IMU
there should be one IMU sample per camera
frame. IMU rate is typically a lot higher than
the camera FPS. However, there is some
benefit for some IMU samples exactly
coinciding with exposure midpoints (see the
“Advanced” case below)

Missing offsets
Typically, a camera system does not directly output the exposure midpoint but you
may have access to other timestamps, from which it can be computed. For example

Spectacular AI Oy 14/20

2024-09-13

the trigger timestamp, to which one then needs to add half of the exposure time. In
case of rolling shutter sensors, it is also necessary to add half of the readout time.

Similarly, the IMU, or the real-time processor that reads it may not natively output
the best timestamp for the IMU sample since IMU samples also represent a short
time window, whose duration depends on the IMU settings, in particular the DLPF
configuration. You can refer to the IMU datasheet for these values.

Luckily, this category of problems is typically fixable in the host-side software.

Spectacular AI Oy 15/20

2024-09-13

Appendix - Examples and details

Coordinate conversion example

Consider an example, where we have a small UAV with a front-facing camera and we
would like to convert from the Spectacular AI GNSS-VIO output poses (IMU-to-ENU)
to an FRD-to-NED convention used by, e.g., PX4.

Local coordinate system conversion: First, we need to define our IMU-to-output
matrix. There are two options:

1. We can directly extract it from CAD file, which determines the exact position of
the IMU, w.r.t., the reference point for the FRD frame (e.g., center of gravity)

2. It is not known accurately, let’s use a tape measure:
a. Measure the longitudinal distance between the camera and the

reference point (d) and the distance in the altitude direction (h), in
meters. Let us assume that the lateral distance is nearly zero

b. The CAM-to-OUT matrix (TCam→Out) is:

[
[0, 0, 1, d], # Row 1: OUT X (forward) = CAM Z + offset d
[1, 0, 0, 0], # Row 2: OUT Y (right) = CAM X
[0, 1, 0, h], # Row 3: OUT Z (down) = CAM Y + offset h
[0, 0, 0, 1]

]

c. Extract the “imuToCamera” matrix (for the only camera) from the
calibration.json file (assuming it has been automatically computed
by a calibration tool).

Spectacular AI Oy 16/20

https://docs.px4.io/main/en/contribute/notation.html

2024-09-13

d. Compute: TIMU→Out = TCam→Out · TIMU→Cam

Then, TIMU→Out should be written to the calibration.json file as the imuToOutput
field (see the File format section above for reference). After this step, the local
reference frame of the Spectacular AI output poses (and GNSS-VIO poses) should be
the FRD frame. Also add outputCameraPose: False in the vio_config.yaml file, to
ensure this is the case, independent of the parameter sets.

World coordinate system conversion: World coordinate system conversions are not
a part of the Spectacular AI SDK and must always be performed manually. For
example, an ENU-to-NED conversion that does not change the origin of the system is
the matrix (TENU→NED):

[
[0, 1, 0, 0], # Row 1: NED X = North = ENU Y
[1, 0, 0, 0], # Row 2: NED Y = East = ENU X
[0, 0, -1, 0], # Row 3: NED Z = Down = -ENU Z
[0, 0, 0, 1]

]

The Spectacular AI pose matrix (TOut→ENU) can then be transformed into NED
convention as:

TOut→NED = TENU→NED · TOut→ENU

The full conversion formula is

TOut→NED = TENU→NED · TIMU→ENU · TIMU→Out
-1

where the local conversion part (TIMU→ENU -> TOut→ENU) is handled by the SDK if the
imuToOutput is correctly configured in calibration.json.

The global coordinate system conversion can, in this case, also be applied only to the
orientation as:

ROut→NED= RENU→NED · ROut→ENU

where each rotation matrix R in the formula represents the top-left 3x3 corner of the
corresponding Tmatrix.

Spectacular AI Oy 17/20

2024-09-13

Camera models
Spectacular AI SDK utilizes a simplified camera model typical for computer vision:
the origin of the camera coordinate system acts as a single point-like center of
projection. The light captured by the camera is thought to arrive directly at this point
from different directions. The incident direction of a ray of light is assumed to
determine the (fractional) coordinates of the pixel it contributes to.

The intrinsic calibration model is a function that maps an outbound ray direction r =
(rx, ry, rz) to pixel p, that is, light coming from the direction opposite to r is assumed to
be contributing to the pixel with coordinates p = (px, py).

The camera model function fθ: (rx, ry, rz) ↦ (px, py) depends on a vector of parameters θ,
which are determined by a calibration procedure. One of the simplest widely used
models is the undistorted pinhole camera model with 4 parameters θ = (fx, fy, cy ,cx),
defined as

px = rx /rz · fx + cx
py = ry /rz · fy + cy

In a stereo camera system, the calibration typically involves simultaneously
optimizing, TL→R , the extrinsic transformation between the cameras and the
calibration parameters θL, θR for each camera in the stereo camera pair.

Spectacular AI Oy 18/20

2024-09-13

Brown-Conrady
Applied in practice by first computing x = px and y = py using the pinhole model
above and then applying the distortion coefficients (p1, p2, k1, k2, k3, k4, k5, k6) as follows

px’ = x C + 2 p1 x y + p2(r2 + 2 x2)
py’ = y C + p1(r2 + 2 y2) + 2 p2x y

where r2= x2 + y2 and C =(1 + k1 r2 + k2 r4 + k3 r6) / (1 + k4 r2 + k5 r4 + k6 r6).

Kannala-Brandt
Applied by first converting the ray direction r to polar coordinates θ, φ, then applying

(x’, y’) = (r(θ) + ∆r(θ, φ)) ur(φ) + ∆t(θ, φ) uφ(φ)

the radial and tangential directions are

ur(φ) = (cos(φ), sin(φ)) and uφ(φ) = (-sin(φ), cos(φ)),

and the distortion terms are defined from the 18 coefficients (k0, k1, k2, k3, l1, l2, l3, i1, i2, i3,
i4,m1,m2,m3, j1, j2, j3, j4) as

r(θ) = θ (1 + k0θ2 + k1θ4 + k2θ6 + k3θ8)
∆r(θ, φ) = (l1θ + l2θ3 + l3θ5) · (i1cos φ +i2 sin φ + i3 cos 2φ + i4 sin 2φ)
∆t(θ, φ) = (m1θ +m2θ3 +m3θ5) · (j1 cos φ + j2 sin φ + j3 cos 2φ + j4 sin 2φ).

In the Kannala-Brandt-4 model, the other terms vanish and the model simplifies to

(x’, y’) = r(θ) ur(φ)

Finally, the pinhole intrinsics are applied as

px = x’ · fx + cx
py = y’ · fy + cy.

Implementation note: Trigonometric functions can mostly be avoided in the
computations. The full Kannala-Brandt model can be applied as

θ = cos-1(rz / sqrt(rx2 + ry2 + rz2))
(c, s) = safeNormalize(rx, ry) = (rx, ry) / sqrt(rx2 + ry2) = (cos(φ), sin(φ))
c’ = 1 - 2s2 = cos(2φ)
s’ = 2 s c = sin(2φ)

Spectacular AI Oy 19/20

2024-09-13

t = θ2

r(θ) = θ (1 + t(k0 + t(k1 + t(k2 + tk3))))
∆r(θ, φ) = θ (l1 + t(l2 + tl3)) · (i1c +i2 s + i3 c’ + i4 s’)
∆t(θ, φ) = θ (m1 + t(m2 + tm3)) · (j1 c + j2 s + j3 c’ + j4 s’)
ur(φ) = (c, s)
uφ(φ) = (-s, c)

Formally, (cos(φ), sin(φ)) = (rx, ry) / sqrt(rx2+ry2) but some care needs to be taken to
avoid the singularity at (rx, ry) = (0, 0).

Relationships between the extrinsic matrices
To combine an accurate stereo extrinsic matrix T0→1 with “as-designed” or otherwise
approximate IMU-to-camera extrinsics, first determine the IMU-to-camera extrinsics
for the left camera, T0→1 · TIMU→Cam,, and then compute

TIMU→Cam,1 = T0→1 · TIMU→Cam,0

where the dot symbol denotes matrix multiplication.

The following identities may also be useful in other similar scenarios (the superscript
“-1” denotes matrix inversion):

● TIMU→Cam,0 = T0→1-1 · TIMU→Cam,1

● T0→1 = TIMU→Cam,1 · TIMU→Cam,0
-1

● T1→0 = T0→1-1

.

Spectacular AI Oy 20/20

