
Spectacular AI

GNSS + VIO instructions

Required hardware
● u-blox C099-F9P + ANN-MB-00
● Luxonis OAK-D
● Laptop running Linux

GNSS antenna should be connected rigidly to the OAK-D. However the USB3 cable
from OAK-D will interfere with the GNSS, so the cables should be kept separate and
as far apart as possible, preferably shielded with metal.

If the distance from GNSS antenna to OAK-D device is large (>1m), you can improve
accuracy by measuring it and giving the translation to Spectacular AI DepthAI using
gnssToImu parameter as seen in vio_gnss.py example.

u-blox one time setup
Clone u-blox-capture repository.

git clone https://github.com/SpectacularAI/u-blox-capture --recurse-submodules

Configuring u-blox C099-F9P application board
Let’s configure the ublox first to output high precision GNSS locations and nothing
else to ensure minimal latency. Find out the DEVICE name and run the following
command to apply the settings, these will reset when the device is rebooted. Most
likely the device is /dev/ttyACM0 where 0 may be a higher number.

python ubx_configurator.py DEVICE example/high_precision_gps_only.cfg

Once you’ve tested that the settings work, you can make them permanent by using
-flash flag. After this they will not be reset on reboot. Alternatively you can run the
settings command above every time you wish to use the device.

python ubx_configurator.py DEVICE -flash example/high_precision_gps_only.cfg

1/32022-05-09



Spectacular AI

Building RTKLIB
Next we must build RTKLIB which is used to pipe the ground station signal from the
internet to the u-blox device.

cd RTKLIB/app/str2str/gcc/
make

Running and recording GNSS + VIO

1. Pipe RTK signal to device
● RTK information from your provider: USER, PASS, IP, PORT, MOUNTPOINT
● LAT/LON Rough estimate of current position
● DEVICE device name, for example: ttyACM0

./RTKLIB/app/str2str/gcc/str2str -in ntrip://USER:PASS@IP:PORT/MOUNTPOINT \
-p LAT LON 0.0 -n 250 -out serial://DEVICE:460800:8:n:1

Leave this running in the background. It may take minutes to find all the satellites
and reach maximum accuracy.

u-blox device should now show a blinking blue light (connected to GPS) and solid
yellow light next to it (connected to RTK).

2. Testing that GNSS works
Next we’ll ensure that GNSS is working properly, print the output with

python ubx_stdout.py DEVICE —-json

You should see JSON formatted GNSS positions and ideally the “accuracy” should be
below one meter (lower is better).

3. Running GNSS-VIO

If you haven’t tested Spectacular AI sdk-examples yet, it’s recommended that you do
so before proceeding further. You should at least test that the vio_visu.py works as
expected.

Next we’ll pipe the GNSS positions to vio_gnss.py which combines it with vio.

python ubx_stdout.py DEVICE —-json | python vio_gnss.py

2/32022-05-09



Spectacular AI

You will need to move about 30 meters, so the GNSS trajectory is long enough to
align with vio. Once this happens, you will see latitude and longitude coordinates
instead of the relative position.

4. Recording
To record the session, add a recording folder as an argument to vio_gnss.py. It will
overwrite existing data when run again, so adding a timestamp to the folder name is
recommended.

python ubx_stdout.py DEVICE —-json | python vio_gnss.py ./data/

3/32022-05-09


